Follow the instructions for each question and show enough of your work so that I can follow your thought process. If I can't read your work, answer or there is no justification to a solution, you will receive little or no credit!

1. Find the exact value of $\cos (4 \theta+\pi)$ if $\theta=\frac{\pi}{4}$.
2. Find the exact value of $\sin (5 \theta+\pi)$ if $\theta=\frac{\pi}{2}$.
3. A Ferris wheel has a radius of 25 ft . A person takes a seat and the then wheel turns $\frac{5 \pi}{6}$ radians. How far is the person above the ground? If it takes 30 seconds for the wheel to turn $\frac{\pi}{3}$ radians, what is the angular speed?
4. The speedometer of Terry's Honda civic SI is designed to accurate with tires of radius 14 inches. Find the number of rotations of a tire in 1 hour if the car is driven at 55 mph . Suppose that oversized tires of radius 16 inches are placed on the car. If the car is now driven for 1 hour with the speedometer reading 55 mph , how far has the car gone? If the speed limit is 55 mph , does Terry deserve a speeding ticket?
5. Consider the function

$$
f(x)=3+4 \cos (3 x+\pi)
$$

Determine the period, amplitude, the range, the y-intercept and it's phase shift.
6. Consider the function

$$
f(x)=-3+\sin \left(x+\frac{\pi}{2}\right)
$$

Determine the period, amplitude, the range, the y-intercept and it's phase shift.
7. Graph the following function over a two-period interval:

$$
f(x)=1-\tan \left(x+\frac{\pi}{2}\right)
$$

8. Graph the following function over a two-period interval:

$$
f(x)=4-\sin \left(2 x-\frac{\pi}{3}\right)
$$

9. Verify the following identity:

$$
\sin \theta+\cos \theta=\frac{\sin \theta}{1-\cot \theta}+\frac{\cos \theta}{1-\tan \theta}
$$

10. Verify the following identity:

$$
\frac{\sin (s+t)}{\cos s \cos t}=\tan s+\tan t
$$

11. Verify the following identity:

$$
\sin (x+y)+\sin (x-y)=2 \sin x \cos y
$$

12. Verify the following identity:

$$
\frac{\tan \varphi}{1+\cos \varphi}+\frac{\sin \varphi}{1-\cos \varphi}=\cot \varphi+\sec \varphi \csc \varphi
$$

13. Verify the following identity:

$$
\cos (2 x)=\frac{\cot ^{2} x-1}{\cot ^{2} x+1}
$$

